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Introduct ion 

The Lunar Orbi te r  has a s  i t s  prime object ive 
t h e  photographic coverage of se lec ted  por t ions  of 
t h e  lunar  surface.  Although t h e  Ranger Program 
has provided some extremely valuable high resolu- 
t i o n  lunar  photographs, t h e  coverage i s  too  l imi ted  
t o  provide s u f f i c i e n t  information for Apollo. The 
Lunar Orbi ter  coverage w i l l  be secured with s u f f i -  
c i e n t  reso lu t ion  and w i l l  cover enough area  t o  
allow t h e  se lec t ion  of landing s i t e s  fo r  Apollo, 
and i n  conjunction with t h e  Surveyor Spacecraft 
w i l l  provide necessary information for t h e  safe  
landing of Apollo. The spacecraf t  has been 
designed around i t s  photographic payload, and does 
not car ry  many subsidiary experiments; however, it 
w i l l  provide information regarding t h e  lunar  grav- 
i t a t i o n a l  f i e l d ,  and a l imi ted  amount of informa- 
t i o n  regarding micrometeorites and energe t ic  
p a r t i c l e s .  

The b a s i c  concepts described i n  t h i s  paper 
were i n i t i a t e d  by The Boeing Company i n  response 
t o  a request for proposal issued t o  indus t ry  by t h e  
NASA. The Boeing Company i s  carrying out this 
pro jec t ,  a s s i s t e d  by two major subcontractors, 
Eastman-Kodak and RCA. The p r o j e c t  i s  being man- 
aged by t h e  NASA Langley Research Center. 

Mission Plan 

It i s  planned t h a t  t h e  f i r s t  Lunar Orbi te r  
Spacecraf t  w i l l  be launched i n  1966, using an Atlas  
Agena vehic le .  The launch technique and procedures 
( f i g .  1) w i l l  be very s imi la r  t o  those used for t h e  
Ranger Spacecraf t ,  except f o r  the  launch windows 
and t h e  t a r g e t i n g  required f o r  proper lunar  o r b i t s .  
These a r e  unique f o r  t h e  Orbi ter .  
launch w i l l  be  accomplished by  t h e  Eastern Test 
Range s t a t i o n s ;  during subsequent phases of  t h e  
mission t racking  w i l l  be  by t h e  NASA Deep Space 
Network receiving s t a t i o n s .  Central ized cont ro l  
of t h e  mission w i l l  be provided from t h e  NASA Space 
F l i g h t  Operations F a c i l i t y  i n  Pasadena, Cal i forn ia .  

Tracking during 

A c i s l u n a r  t r a j e c t o r y  which w i l l  t ake  from 60 
t o  90 hours i s  planned. Figure 2 shows a t y p i c a l  
s e r i e s  of  maneuvers which w i l l  occur a t  t h e  moon. 
Although these  a r e  shown i n  t h e  plane of t h e  
approach t r a j e c t o r y ,  t h e r e  w i l l  be the  capabi l i ty  
of making a plane change during main deboost i n  
order  t o  more quickly cover t h e  prime photographic 
t a r g e t s .  The approach hyperbola, w i t h  c l o s e s t  
approach a t  about 900 Km above t h e  lunar  surface i s  
planned so t h a t  a t  main deboost t h e  f l i g h t  path i s  
p a r a l l e l  t o  t h e  i n i t i a l  o r b i t  e l l i p s e .  Main 
deboost i s  adjusted so t h a t  t h e  i n i t i a l  o r b i t  has 
an apolune of 1800 Km and a per i lune  of about 
200 Km. The l i n e  of apsides  of t h i s  o r b i t  i s  
ad jus ted  t o  secure coverage of t h e  selected t a r g e t .  
A f t e r  a per iod of t racking  by t h e  Deep Space 
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Receiving S t a t i o n s  t o  determine the  o r b i t a l  param- 
e t e r s ,  a f i n a l  o r b i t  adjustment i s  made by means of 
a Hohman t r a n s f e r  t o  provide a per iselene of 46 Km 
above the photographic t a r g e t .  The launch time and 
o r b i t  t r a n s f e r s  must be  planned so t h a t  when t h e  
spacecraft a r r i v e s  above t h e  t a r g e t  proper l i g h t i n g  
i s  avai lable  for photography. Proper l i g h t i n g  con- 
d i t i o n s  are those which provide s u f f i c i e n t  l i g h t  
and enough s e n s i t i v i t y  t o  surface slope changes t o  
secure adequate s ignal- to-noise  i n  t h e  f i n a l  photo- 
graph. Figure 3 shows the lunar  photometric func- 
t i o n  and i d e n t i f i e s  t h e  region of operat ion which 
i s  employed by the  Lunar Orbi ter  camera. The func- 
t i o n  @ i s  a measure of t h e  r e f l e c t i v i t y  of the 
surface, g i s  t h e  phase angle (angle  between l i n e  
of sight and sun l i n e ) ,  and a i s  t h e  i n c l i n a t i o n  
of the surface normal with respect  t o  t h e  l i n e  of 
s igh t .  The case wherein these  angles a l l  l i e  i n  
one plane i s  i l l u s t r a t e d  i n  f igure  3.  The p l o t  
gives  t h e  s e n s i t i v i t y  of t h e  photographic system 
with l i g h t i n g  angle t o  changes i n  slope of t h e  sur- 
face .  For example, a t  a constant value of 
i f  the slope changes +l5' (away from t h e  sun), t h e  
light i n t e n s i t y  drops t o  one-half the  i n t e n s i t y  a t  
a = 0. The low-resolution camera planned fo r  the 
Lunar Orbi te r  has a f i e l d  of view of about 220' and 
w i l l  cover t h e  operat ing range shown within the 
shaded area .  There bs good s e n s i t i v i t y  t o  s lopes 
within t h i s  area;  however, t h e  absolute  i n t e n s i t y  
of a f l a t  lunar  surface may vary by almost 2:1 
across  t h e  frame. 

g = 60°, 

Figure 4 i l l u s t r a t e s  how the  l i g h t i n g  condi- 
t i o n s  progress  with respect  t o  t h e  lunar  surface 
f o r  the  170 i n c l i n a t i o n  case.  
shown with the i n i t i a l  ascending nodal po in t  a t  
about 50° W .  longi tude.  An a r b i t r a r y  t a r g e t  has 
been se lec ted  and i s  shown a t  20' E.,  3° N. 
no plane change during t h e  o r b i t a l  maneuvers, an 
i n i t i a l  wai t ing time of 4 days i s  required i n  order  
for  t h e  descending node port ion of t h e  o r b i t  t o  
begin i n t e r s e c t i n g  t h e  region of i n t e r e s t .  After 
an 8-day wai t ing per iod,  t h e  54th o r b i t  i n t e r c e p t s  
t h e  t a r g e t .  The t iming of th i s  event i s  such t h a t  
there  i s  proper i l luminat ion (g = 6 0 ~ ) .  
possible on t h i s  and o ther  o r b i t s  with proper space- 
c r a f t  a t t i t u d e  t o  take s a t i s f a c t o r y  p i c t u r e s  over 
t h e  range included by t h e  shaded area .  Boundaries 
of the shaded areas  a r e  l i m i t s  s e t  by t h e  range of 
l i g h t i n g  ( g  var iab le  from 7 5 O  t o  50') which y i e l d s  
a s a t i s f a c t o r y  p ic ture .  It should be noted that a s  
the o r b i t  r o t a t e s  with respect  t o  t h e  lunar  surface 
a t  13' per  day and t h e  i l luminat ion r o t a t e s  i n  t h e  
same d i r e c t i o n  a t  t h e  r a t e  of 12O per  day t h e r e  i s  
a s l igh t  vern ier  e f f e c t  which s h i f t s  t h e  l a t i t u d e  
over which s a t i s f a c t o r y  p i c t u r e s  can be  taken. It 
maybe concluded from t h i s  f igure  t h a t  it i s  possi-  
b le  t o  photograph on a s ingle  f l i g h t  t a r g e t s  
located within t h e  shaded area of f i g u r e  11 with a 
maximum wait ing time of about 15 days. 

Posigrade o r b i t s  a r e  

With 

It i s  a150 



Photographic Coverage 

The Spacecraft camera, which w i l l  be described 
l a t e r  i n  the paper, contains two f15.6 lenses ,  a 
24-inch foca l  length high-resolution l e n s ,  and :I 

3-inch focal  length l e n s  used f o r  moderate resolu- 
t i o n  s te reo  coverage. Simultaneous exposures a r e  
made which have t h e  format shown a t  t h e  t o p  of f i g -  
ure  5 .  The high-resolut ion l e n s  covers, from an 
a l t i t u d e  of 46 Km, a region 16.4 x 4.1 Km with 
approximately 1 meter reso lu t ion .  That a rea  l i e s ,  
a s  shown, within t h e  36-~m x 33-Km area covered by 
t h e  o t h e r  lens  with a reso lu t ion  of about 8 meters. 
Two multiple-exposure coverage modes a r e  a l s o  shown 
i n  f i g u r e  3 .  An example of one mode i s  t h e  4 frame 
s t e r e o  sequence which provides moderate reso lu t ion  
s t e r e o  coverage of a 36-~m x 5 0 - ~ m  area and 4 non- 
s t e r e o  high-resolution samples. Another mode i s  
shown by the 1 4  frame high-resolut ion sequence, 
which provides contiguous high-resolut ion coverage 
of a 1 6 . 4 - K m  x 6 4 - ~ m  area .  On successive o r b i t a l  
passes  t h e  width of coverage of any selected mode 
may be increased with a repeated s i m i l a r  sequence. 
Approximately 200 f e e t  of f i l m  i s  car r ied  i n  t h e  
camera, providing l9O frames of coverage. This 
allows 12,000 Km2 of  high-resolut ion coverage and 
100,000 Km2 of s te reo  coverage. 
roll of 70-mm fi lm,  approximately one mil l ion pic-  
t u r e s  of qual i ty  s imi la r  t o  commercial TV a r e  
s tored.  The high-resolut ion p i c t u r e s  alone would 
provide suf f ic ien t  ground coverage t o  photograph t h e  
e n t i r e  width of the  United S t a t e s  i n  a swath about 
1 mile wide. 

I n  the 200-foot 

Spacecraft Configuration 

Figure 6 i s  a drawing of the  8 p p o u n d  space- 
c r a f t  configuration which shows t h a t  most of t h e  
major spacecraf t  components and systems a r e  a t tached 
t o  a s ing le  equipment mounting p l a t e ,  with t h e  
exception of t h e  rocket engine and tanks.  I n  t h e  
f l i g h t  configuration a l l  of the  main spacecraf t  
s t r u c t u r e  above the  equipment mounting deck is  
covered with a highly r e f l e c t i v e  shroud of aluminum 
coated mylar. During launch, t h e  s o l a r  panels a r e  
folded under t h e  spacecraf t  base and t h e  antennas 
held against  t h e  s ide  of the  s t r u c t u r e .  The space- 

c r a f t  i s  $ f e e t  high and 5 f e e t  i n  diameter, 

excluding the s o l a r  panels and antennas. When 
deployed, the span along t h e  antenna booms i s  

l& f e e t  and about 12  f e e t  across  t h e  s o l a r  panels .  

A photograph of the  Lunar Orbi ter  mockup i s  shown 
i n  f i g u r e  7 .  Major elements of t h e  spacecraf t  a r e  
described below. 

2 

2 

Spacecraft S t ruc ture  

The spacecraft cons is t s  of a main Equipment 
Mounting Deck and an upper module supported by 
t r u s s e s  and an arch.  The module supports the  gim- 
ba l led  ve loc i ty  control  engine and tanks .  The 
upper module may be removed a s  an assembly f o r  
engine t e s t i n g .  It  a l s o  c a r r i e s ,  d i r e c t l y  under t h e  
engine,  t h e  high pressure N2 tank,  which provides 
pressurizat ion f o r  the  engine feed system and t h e  
a t t i t u d e  control  t h r u s t e r s .  

Programmer 

The spacecraft programmer i s  e s s e n t i a l l y  a 
d i g i t a l  data processing system, cons is t ing  of 

r e g i s t e r s ,  memory, clock, comparators, adders, 
e t c .  The u n i t  weighs 16 pounds, uses in tegra ted  . 
c i r c u i t r y ,  and includes a random access memory with 
a capaci ty  of 128 2 i - b i t  words. It w i l l  be used t o  
cont ro l  about 65 funct ions within t h e  spacecraf t .  

A s  f i g u r e  8 i l l u s t r a t e s ,  inputs  t o  t h e  program- 
mer a r e  provided from t h e  e a r t h  through t h e  space- 
c r a f t  communications system. These command inputs  
a r e  e i t h e r  i n  t h e  form of a d i rec t ion  t o  be s tored 
and acted upon a t  a designated l a t e r  time or a 
"real-time" d i rec t ion  t o  be executed immediately. 

Because a l a r g e  number of t h e  stored commands 
w i l l  involve sequences t h a t  w i l l  be used repeatedly 
during t h e  mission, those sequences a re  permanently 
incorporated a s  subroutines i n  the  programmer. The 
cownand from the  ear th ,  therefore ,  needs only t o  
designate  which sequence i s  des i red ,  ind ica te  t h e  
time a t  which t h e  sequence i s  t o  be i n i t i a t e d  and, 
where required,  t h e  "magnitude" for each s t e p  Of 
t ,he  q p ~ i i ~ n r p .  

A command t o  change spacecraf t  a t t i t i lde  i s  an 
example where t h e  magnitude of t h e  desired change 
about t h e  p i t c h ,  yaw, and roll axes i s  i n s e r t e d  
i n t o  the  sequence. The programmer, however, does 
not funct ion i n  an open-loop manner f o r  t h i s  type 
command. When it c a l l s  f o r  a p a r t i c u l a r  change i n  
p i t c h  a t t i t u d e ,  it w i l l  not s tep  t o  t h e  next func- 
t i o n  i n  t h e  sequence u n t i l  t h e  p i t c h  change i s  
v e r i f i e d  by in tegra t ion  of t h e  measured p i t c h  a x i s  
angular ve loc i ty .  If t h a t  a t t i t u d e  change was f o r  
t h e  purpose, f o r  example, of placing the  spacecraf t  
i n  t h e  proper o r i e n t a t i o n  f o r  deboost i n t o  lunar  
o r b i t ,  t h e  programmer would then f i r e  t h e  r e t r o  
engine, comparr t h e  measured change i n  ve loc i ty  with 
t h a t  ca l led  for by elrth-conunnnd. .ind shut the  engine 
off  when t h e  des i red  ve loc i ty  change had been accom- 
p l i shed .  
the  "reverse a t t i t u d e  maneuver" sequence t o  re turn  
t h e  spacecraf t  t o  i t s  o r i g i n a l  o r i e n t a t i o n ,  and then 
t h e  sequence t o  "acquire sun and Canopus. I '  

After that,,  the  programmer would i n i t i a t e  

Power System 

The spacecraf t  power system i s  a conventional 
s o l a r  array-storage b a t t e r y  type with appropriate  
provis ions f o r  charge cont ro l  and vol tage regula- 
t i o n .  The b a t t e r y  w i l l  be used t o  supply the  space- 
c r a f t  power requirements during t h e  launch phase 
p r i o r  t o  s o l a r  a r r a y  deployment and during these 
per iods of t h e  lunar  o r b i t  when t h e  spacecraf t  i s  i n  
t h e  moon's shadow. A t  a l l  o ther  times t h e  s o l a r  
a r r a y  w i l l  supply t h e  spacecraf t  demands, including 
recharging of t h e  b a t t e r y .  

When i n  f u l l  i l luminat ion,  t h e  10,8% solar  
c e l l s  which comprise t h e  a r r a y  w i l l  have a maximum 
power output  of about 375 watts. 
c a p a b i l i t y  of t h e  system i s  represented by t h e  
12-ampere-hour capaci ty  of t h e  nickel-cadmium bat-  
t e r y .  The output vol tage of the  system can vary 
from a minimum of 22 v o l t s  when t h e  loads a r e  being 
supplied by the  b a t t e r y  t o  a maximum of 31 v o l t s  
when t h e  a r r a y  i s  i n  operat ion.  A shunt regulator  
i s  used t o  prevent t h e  vol tage from exceeding 

The "nighttime" 

31 v o l t s .  

At t i tude  System 

The a t t i t u d e  system block diagram i s  shown i n  
f igure  9 f o r  t h e  yaw a x i s .  A s imi la r  system i s  
employed using a Canopus s t a r  t r a c k e r  for roll 



cont ro l .  The operat ional  modes for t h i s  system 
a r e  : I 

( a )  C e l e s t i a l  hold - I n  t h i s  mode t h e  bas ic  
references a r e  t h e  sun and Canopus with t h e  gyros 
operat ing a s  r a t e  sensors. This mode i s  employed 
during normal c ru ise  and i s  used a s  a reference f o r  
i n i t i a t i o n  of a l l  a t t i t u d e  changes. 

(b) I n e r t i a l  hold - I n  this mode the bas ic  
references a r e  t h r e e  gyros operat ing a s  a t t i t u d e  
angle  sensors .  This  mode i s  used i n  any a x i s  where 
t h e  c e l e s t i a l  reference i s  occulted, during engine 
f i r i n g ,  and during part of t h e  photographic hold 
mode. 

( c )  Slew command - I n  this mode one a x i s  a t  a 
t i m e  i s  commanded t o  acquire a p r e s e t  angular r a t e .  
Two gyros a r e  i n  i n e r t i a l  hold and t h e  command a x i s  
gyro i s  i n  t h e  r a t e  mode. The command a x i s  gyro 
output i s  mixed with the  s l e w  s igna l  and when a 
match i s  secured t h e  je t  ceases t o  f i r e .  

(d)  Engine on, i n e r t i a l  hold - T h i s  mode i s  
s imi la r  t o  mode ( b ) ,  except t h a t  t h e  ve loc i ty  con- 
t r o l  engine i t s e l f  i s  used t o  maintain spacecraf t  
o r ien ta t ion .  T h i s  i s  accomplished by gimballing 
t h e  engine. 

(e) Photographic hold - I n  th i s  mode t h e  p i t c h  
and roll axes a r e  i n  i n e r t i a l  hold. The yaw a x i s  
i s  s e t  t o  zero y a w  ( t o  avoid photographic smear) by 
nul l ing  t h e  output of a V/H crab angle sensor and 
it i s  then returned t o  i n e r t i a l  hold for t h e  dura- 
t i o n  of t h e  photographic por t ion  of t h e  o r b i t .  

A l l  of t h e  mode se lec t ions  and t iming and comparison 
of commanded and a c t u a l  angle changes a r e  made 
within t h e  spacecraf t  programmer, as described 
previously.  

Veloci ty  System 

The ve loc i ty  cont ro l  engine i s  a 100-pound 
t h r u s t  Marquardt (MA 109) bipropel lan t  engine. 
Nitrogen Tetroxide and Aerozine 50 a r e  used, pres- 
sure  f e d  by ni t rogen gas a t  about 200 p s i  pressure.  
With the planned tank  s ize ,  a t o t a l  AV c a p a b i l i t y  
of about 3280 f e e t  per  second w i l l  be avai lable  f o r  
midcourse cor rec t ions  and lunar  o r b i t  adjustments. 
Control over v e l o c i t y  changes i s  achieved by using a 
prec is ion  l i n e a r  accelerometer t o  i n t e g r a t e  ve loc i ty  
changes and command engine shutdown a t  the  appro- 
p r i a t e  time. 

Camera System 

Figure 10 i s  a schematic of t h e  camera system. 
Two l e n s e s  a r e  employed, a 24-inch f o c a l  length, 
f l5 .6  for high-resolut ion p i c t u r e s  and a 3-inch, 
f15.6 l e n s  for simultaneous, nested, low-resolution 
p i c t u r e s .  The f i l m  used i s  a 70-mm Kodak SO 243 
a e r i a l  f i l m  which i s  preprinted along one edge with 
grey sca les ,  reso lu t ion  b a r s ,  and o ther  per t inent  
information. 
approximately 55 by 219 mm (corresponding t o  
4.1 by 1 6 . 4  km on t h e  lunar  surface from an a l t i -  
tude of 46 Km).  
55- by 60-mm frame which corresponds t o  a 33- by 
36-~m square from t h e  same a l t i t u d e .  After  expo- 
sure, t h e  f i l m  i s  s tored on loopers .  The f i lm i s  
then passed through a Bi -Mat  Processor a t  a speed 
of about 77 mm/minute. 
provided t o  s t o r e  a l l  of t h e  f i l m  taken during one 

The 24-inch l e n s  produces a frame 

The 3-inch l e n s  produces a 

Enough looper s torage i s 

o r b i t ;  the processor can process a l l  of t h e  f i l m  
before t h e  next o r b i t .  
S O  243 i n t o  contact  with Kodak SO 111. 
separated a f t e r  processing, t h e  f i lm dr ied  and 
passed through t h e  inac t ive  readout onto a f i l m  
takeup spool. A t  any time, t h e  f i l m  can be read out 
by running it through t h e  readout onto t h e  readout 
looper. The capaci ty  of this  looper i s  about four  
frames. To provide image motion compensation during 
exposure, the  film pla tens  a r e  moved i n  t h e  f l i g h t  
d i rec t ion  a t  a speed commanded by a V/H sensor .  
Transverse image motion compensation i s  not neces- 
sary a s  t h e  spacecraf t  yaw angle i s  commanded t o  
zero i n  t h e  photographic mode. 

The processor presses  t h e  
These a r e  

Figure 11 i s  a schematic of t h e  spacecraf t  
readout system. The l i g h t  source f o r  f i l m  scanning 
i s  a CBS l i n e  scan tube having i t s  phosphor on a 
revolving drum. The generated spot of light i s  
demagnified t o  0.005 mm and produces scanning l i n e s  
on the f i l m  of approximately 2.5-mm length .  
demagnifying o p t i c a l  system is  moved so t h a t  suc- 
sessive l i n e  scans a r e  displaced u n t i l  60 m i s  
scanned, then t h e  f i l m  i s  advanced 2 .5  mm. The next 
s e r i e s  of l i n e  scans occurs i n  t h e  opposite d i rec-  
t i o n  a s  shown. Col lect ing o p t i c s  lead  t h e  t r a n s -  
mitted l i g h t  i n t o  a photomult ipl ier ,  and t h e  
resu l t ing  e l e c t r i c a l  s igna l  i s  then conditioned for 
handling by t h e  spacecraf t  communication system. A 
separate synch package provides spot sweep vol tages  
t o  dr ive the l i n e  scan tube and synchronization 
pulses. 

The 

The ground reconstruct ion equipment located a t  
each of t h r e e  Deep Space Receiving Sta t ions ,  accepts  
t h e  video s igna l  and d isp lays  t h e  video da ta  l i n e  
by l i n e  on a kinescope face. The displayed image 
i s  recorded on a continuously moving 35-mm f i l m  
s t r i p .  
a cen t ra l  f a c i l i t y  where a reassembly p r i n t e r  i s  
employed t o  automatical ly  reassemble t h e  
photographs. 

The 35-mm f i l m  s t r i p s  a r e  then del ivered t o  

Communications System 

The spacecraf t  S-Band communication system, 
which i s  shown i n  block diagram form i n  f i g u r e  12, 
w i l l  provide f o r  t h e  transmission of t h e  spacecraf t  
telemetry and video data ,  for t h e  recept ion of com- 
mands from t h e  e a r t h  and f o r  the  s igna ls  which per- 
mit range and range-rate data  t o  be obtained for use 
i n  t r a j e c t o r y  and lunar  o r b i t  determination. 
telemetry and commands w i l l  be i n  a d i g i t a l  form 
and the video da ta  i n  analog form. 

A s  shown i n  f i g u r e  12, t h e  spacecraf t  w i l l  

The 

employ two antennas, a low-gain one having a rea- 
sonably "omnidirectional" p a t t e r n  and a high-gain 
antenna with a 10' beamwidth. Command recept ion,  
low-power te lemetry transmission (0.5 w a t t ) ,  and 
ranging and range-rate measurements w i l l  be accom- 
pl ished using the  low-gain antenna. The 3-foot- 
diameter parabol ic  high-gain antenna w i l l  be used 
only during per iod of photographic da ta  readout for 
transmission of t h e  composite video and te lemetry 
s ignal .  
furnishes  t h e  necessary exc i ta t ion .  

A 10-watt t r a v e l l i n g  wave tube RF amplif ier  

The hear t  of t h e  communications system i s  t h e  
Mariner C type transponder. 
coherent mode, where t h e  t ransmit  frequency of t h e  
transponder i s  locked t o  t h e  frequency of a s igna l  
received from t h e  e a r t h  i n  t h e  exact r a t i o  2401221, 
determination of spacecraf t  r a d i a l  v e l o c i t y  with an 

When operated i n  a 



accuracy of  about 0.02 meter/second i s  poss ib le .  
When interrogated by t h e  JPL psuedo noise  ranging 
system, the transponder w i l l  permit measurement of 
t h e  dis tance t o  t h e  spacecraf t  with an accuracy of 
about 230 meters. 

The receiver  port ion of  the transponder w i l l  
d e t e c t  t h e  d i g i t a l  command s i g n a l  and r e l a y  it t o  
t h e  command decoder where it w i l l  be temporar i ly  
s tored  u n t i l  v e r i f i e d  on t h e  e a r t h  by means of 
spacecraf t  te lemetry.  When cor rec t  rece ip t  has  
been ver i f ied ,  an "execute" s i g n a l  from t h e  e a r t h  
w i l l  t r a n s f e r  t h e  command t o  t h e  programmer where 
it w i l l  be acted upon as e i t h e r  a real-time o r  
s tored  program command. 

Figure I3 shows t h e  RF baseband s t ruc ture  f o r  
t h e  composite te lemetry and video t ransmission 
mode, and serves t o  i l l u s t r a t e  t h e  somewhat unusual 
modulation technique employed f o r  t h e  video data .  
The 
ulud-da t rd  unto a 3O-iCc subcar r ie r ,  which i s  then 
combined with t h e  video data  t h a t  has been t rans-  
formed t o  a v e s t i g i a l  sideband s igna l .  This  com- 
p o s i t e  baseband i s  then phase modulated onto t h e  
2295-Mc RF c a r r i e r .  

b i t lsecond te lemetry d a t a  t r a i n  i s  phase 
-- 

The v e s t i g i a l  sideband s igna l  i s  created by 
amplitude modulating t h e  da ta  onto a 310-Kc sub- 
c a r r i e r  using a double balanced modulator. This 
suppresses t h e  c a r r i e r  and produces two equal  s ide-  
bands. A n  appropriate  f i l t e r  i s  then superposed on 
t h a t  double sideband spectrum t o  e s s e n t i a l l y  e l i m i -  
nate  t h e  upper sideband. Since t h e  missing sub- 
c a r r i e r  must be re inser ted  on t h e  ground f o r  proper 
de tec t ion  of  the v e s t i g i a l  sideband s igna l ,  provi- 
s ion f o r  deriving such a subcar r ie r  s igna l  i s  made 
by t ransmi t t ing  a p i l o t  tone of 38.75 Kc. 
p i l o t  tone is  exac t ly  118 of t h e  o r i g i n a l  310-Kc 
subcar r ie r  frequency and derived from t h e  same 
c r y s t a l  o s c i l l a t o r .  Multiplying t h e  received p i l o t  
tone by 8 i n  the ground equipment provides a proper 
subcar r ie r  f o r  r e i n s e r t i o n .  The use of the ves t ig-  
i a l  sideband modulation technique permits  t h e  use 
of a l a r g e  modulation index t o  obta in  noise  
improvement without exceeding t h e  a l l o t t e d  3 Mc 

RF bandwidth. 

That 

3 

Reception of t h e  spacecraf t  data  and transmis- 
s ion of commands t o  t h e  spacecraf t  w i l l  be accom- 
p l i shed  using e x i s t i n g  NASA Deep Space Receiving 
S t a t i o n s .  Figure 14 i s  a block diagram of t h e  
equipment used at  those receiving s t a t i o n s  f o r  
handling of t h e  telemetry, video, and t racking  d a t a  
and f o r  generation of commands. 
per iods when t h e  spacecraf t  s igna ls  are occul ted by 
t h e  moon, the receiving s t a t i o n s  located a t  
Goldstone, Woomera, and Madrid w i l l  permit contin- 
uous contact with t h e  spacecraf t .  These s t a t i o n s  
a r e  connected t o  the NASA Space F l ight  Operations 
F a c i l i t y  (SFOF) i n  Pasadena, which w i l l  serve a s  
t h e  c e n t r a l  control  point  f o r  carrying out t h e  m i s -  
s ion.  The tracking and te lemetry d a t a  co l lec ted  a t  
t h e  remote receiving s t a t i o n s  are relayed t o  t h e  
SFOF where the necessary computations are made for 
mission control. Commands t o  t h e  spacecraf t  a r e  
or ig ina ted  i n  t h a t  f a c i l i t y  and relayed t o  t h e  
remote s ta t ions  f o r  transmission t o  the  spacecraf t .  
Because of the l a r g e  data  bandwidth involved, the  
video d a t a  must be recorded a t  t h e  s i t e s  and t h e  
records then shipped t o  a c e n t r a l  processing f a c i l -  
i t y .  A computer i s  used f o r  formatt ing t h e  telem- 
e t r y  d a t a  for transmission t o  t h e  SFOF and f o r  

Except f o r  t h e  

receiving and s tor ing  t h e  spacecraf t  commands 
or ig ina t ing  a t  t h e  SFOF. 

Analysis of Video System 

Figure 15 shows a l l  of t h e  elements which make 
up the video system, both i n  t h e  spacecraf t  and on 
t h e  ground. Defining t h e  o v e r a l l  t r a n s f e r  funct ion 
of t h a t  system i s  accomplished by cascading the  
input-output t r a n s f e r  funct ions of each of t h e  sys- 
t e m  elements. The system output, which c o n s i s t s  of 
t h e  system e x c i t a t i o n  ( t h e  scene) times t h e  t r a n s f e r  
funct ion can then be compared with t h e  system noise ,  
passed through t h e  system elements, i n  order  t o  
obtain t h e  o v e r a l l  s igna l  t o  noise  r a t i o .  Figure 15 
i s  a normalized p l o t  of t h e  s p a t i a l  frequency 
response of each of t h e  system elements. Nominal 
condi t ions such as l e n s  off-axis  response and v a r i -  
a t i o n  of film response with off-nominal dens i ty  a r e  
not shown, but  can be included i n  t h e  ana lys i s  if 
desired.  The "smear" t r a n s f e r  f i i n c t i n ~  i s  shown 
for t h e  worst case computed exposure of 1/25 second 
and 2u var ia t ion  i n  cont ro l  capabi l i ty  i n  vehic le  
point ing and r a t e .  Halving t h e  exposure time would 
e f f e c t i v e l y  increase th i s  t r a n s f e r  funct ion t o  
within 20 percent of u n i t y  i n  t h e  range shown. The 
o v e r a l l  system t r a n s f e r  funct ion i s  shown by t h e  
heavy curve. 

The primary sources of system noise a r e  the 
spacecraf t  recording film and t h e  communications 
link, although minor noise  inputs  a r e  inser ted  by 
o ther  elements. When t h e  system noise  i s  combined 
with t h e  system t r a n s f e r  funct ion t h e  o v e r a l l  s ig-  
n a l  t o  noise  r a t i o  i s  as shown i n  f i g u r e  17. The 
system tes t  input  i s  considered t o  be t h e  bar char t  
tes t  p a t t e r n  shown. The i n t e n s i t y  of t h e  a l t e r n a t e  
b a r s  coincides  with the i n t e n s i t y  of  light which 
could e x i s t  on t h e  two meter base,  l/Z-meter high 
cone (an assumed lunar  obs t ruc t ion  of importance t o  
t h e  Apollo lunar  excursion module). 
l i g h t i n g  would p r e v a i l  f o r  a lunar  c r a t e r  of the  
same dimensions. If a b a r  t a r g e t  having bars of 
112 meter i n  width were scanned by an o p t i c a l  
aper ture  of e f f e c t i v e  1/2-meter diameter, a s i g n a l  
t o  noise  of about 0.7 would be  obtained. With t h e  
t a r g e t  b a r s  1 meter i n  s i z e ,  a s i g n a l  t o  noise  of 
s i x  could be secured. For c r a t e r s  or cones of t h e  
s i z e  ind ica ted ,  t h e  computed s i g n a l  t o  noise  would 
be approximately 3 .  This i s  considered s u f f i c i e n t  
f o r  adequate t a r g e t  de tec t ion  and provides a s u f f i -  
c i e n t l y  low rate of false t a r g e t  generat ion.  It i s  
probable t h a t  t r a i n e d  f i l m  i n t e r p r e t e r s  could 
exceed t h e  computed system performance f o r  t a r g e t  
de tec t ion  using i n t e g r a t i o n  schemes which a r e  a t  
present  not amenable t o  numerical evaluat ion.  

Similar  

Concluding Remarks 

The Lunar Orbi ter  system has been designed and 
appears adequate t o  secure t h e  photographic cover- 
age required for  t h e  Apollo Pro jec t .  A t  the pres-  
e n t  time, almost a l l  designs have been completed 
and f a b r i c a t i o n  i s  underway. S t a r t i n g  t h i s  summer 
an in tens ive  s e r i e s  of t es t s  w i l l  commence on a l l  
subsystems and components, t o  be  followed by space- 
c r a f t  l e v e l  t e s t i n g  l a s t i n g  through 1965. 
launchings of t h e  Orbi te r  a r e  planned for 1966. 
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